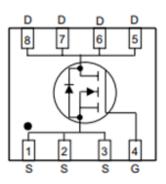
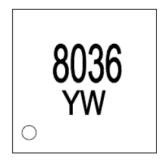


SSC8036GQ4


N-Channel Enhancement Mode MOSFET

> Features

VDS	VGS	RDSON Typ.	ID
30V	1201/	14mR@10V	104
	±20V	20mR@4V5	18A


> Description

This device uses advanced trench technology to provide excellent RDSON and low gate charge. This device is suitable for use as a load switch or in PWM applications. > Pin configuration

Bottom View

(Y: year/W: week) Marking

> Applications

- Load Switch
- NB/PC
- DCDC conversion

> Ordering Information

Device	Package	Shipping
SSC8036GQ4	DFN3x3	5000/Reel

Symbol	Parameter	Ratings	Unit	
V _{DSS}	Drain-to-Source Voltage		30	V
V _{GSS}	Gate-to-Source Voltag	Gate-to-Source Voltage		V
	O antina and Drain O anna t	TC=25℃	18	А
ID	Continuous Drain Current	TC=100°C	13	А
I _{DM}	Pulsed Drain Current	102	А	
I _{DSM}	Continuous Drain Current ^a	TA=25℃	8.6	А
		TA=70 ℃	5.8	А
PD	Power Dissipation ^c	TC=25℃	24	W
		TC=100°C	9.5	W
P _{DSM}	Derver Dissingtion 8	TA=25℃	3	W
	Power Dissipation ^a	TA=70 °C	2	W
E _{AS}	Avalanche Energy L=0.1mH		42	mJ
TJ	Operation junction temperature		-55 to 150	°C
T _{STG}	Storage temperature range		-55 to 150	°C

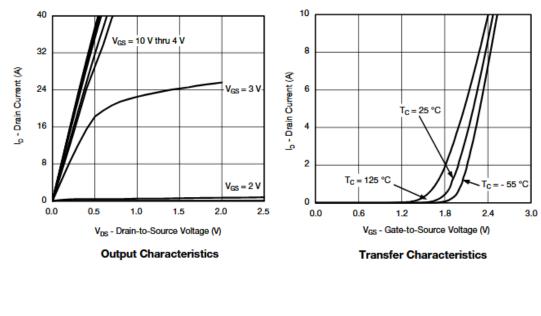
➤ Absolute Maximum Ratings(T_A=25°C unless otherwise noted)

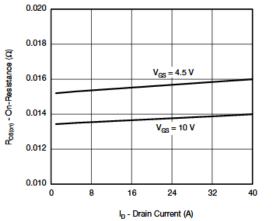
> Thermal Resistance Ratings($T_A=25^{\circ}C$ unless otherwise noted)

Symbol	Parameter Typ		Maximum	Unit
$R_{ extsf{ heta}JA}$	Junction-to-Ambient Thermal Resistance ^a		45	°C/W
$R_{ extsf{ heta}JC}$	Junction-to-Case Thermal Resistance		5.5	C/ VV

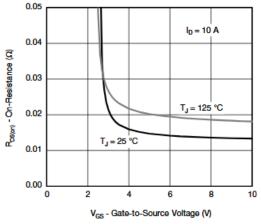
Note:

- a. The value of RθJA is measured with the device mounted on 1 in² FR-4 board with 2oz.copper,in a still air environment with TA=25°C. The value in any given application depends on the user is specific board design. The current rating is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

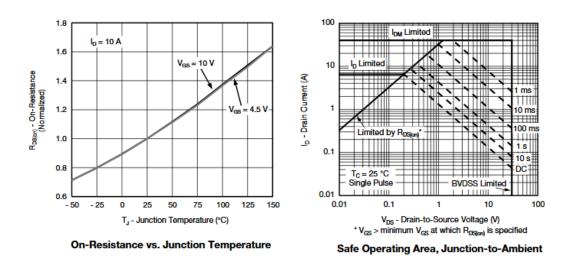



Electronics Characteristics(T_A=25°C unless otherwise noted)

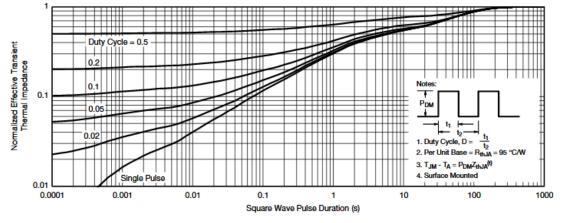
Symbol	Parameter	Test Conditions	Min	Тур.	Мах	Unit
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V,ID=250uA	30			V
V _{GS} (th)	Gate Threshold Voltage	VDS=VGS,ID=250uA	1		3	V
D	Drain-Source On-	VGS=10V,ID=15A		14	21	
R _{DS(on)}	Resistance	VGS=4.5V,ID=12A		20	36	mR
I _{DSS}	Zero Gate Voltage Drain Current	VDS=24V,VGS=0V			1	uA
I _{GSS}	Gate-Source leak current	VGS=±20V,VDS=0V			±100	nA
G _{FS}	Transconductance	VDS=15V,ID=12A		16		S
V _{SD}	Forward Voltage	VGS=0V,IS=1A		0.8	1.5	V
Ciss	Input Capacitance			550		
Coss	Output Capacitance	VDS=15V, VGS=0V, f=1MHz		180		pF
Crss	Reverse Transfer Capacitance			95		
T _{D(ON)}	Turn-on delay time			16		
Tr	Rise Time	VGS=10V,		32		
T _{D(OFF)}	Turn-off delay time	VDS=15V, RL=2.3R, RG=3R		18		ns
Tf	Fall Time			55		
Qg	Total Gate Charge			13		
Qgs	Gate Source Charge	VDS=15V , VGS=10V , IDS=7A		1.6		nC
Qgd	Gate Drain Charge			2.4		



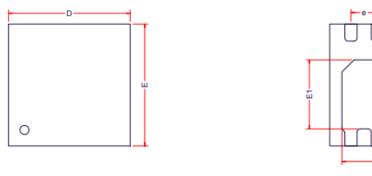
> Typical Characteristics(T_A=25°C unless otherwise noted)



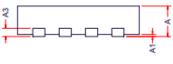
On-Resistance vs. Drain Current and Gate Voltage



On-Resistance vs. Gate-to-Source Voltage


SSC8036GQ4

Normalized Thermal Transient Impedance, Junction-to-Ambient


Package Information

BOTTOM VIEW

D1

TOP VIEW

SIDE VIEW

DFN3X3-8L

Sumbol	Dimensions in Millimeters			
Symbol	Min.	Тур.	Max.	
A	0.70	0.75	0.80	
A1	0.00	0.02	0.05	
A2	0.20Ref			
D	2.90	3.00	3.10	
E	2.90	3.00	3.10	
D1	2.35	2.40	2.45	
E1	1.65	1.70	1.75	
b	0.25	0.30	0.35	
е	0.65BSC			
L	0.37	0.42	0.47	

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.